Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 298: 28

Answer

(a) $\frac{352}{105}$ (b) $\frac{25}{12}$ (C) $\frac{496}{315}$

Work Step by Step

$\Delta x=\frac{-a+b}{n}=\frac{-1+9}{4}=2$ (a) Left end points: $x_{k}^{*}=x_{k-1}=(-1+k) \Delta x+a=1+(-1+k) \times 2=-1+2 k$ $\therefore f\left(x_{k}^{*}\right)=\frac{1}{-1+2 k}$ $A=\left[\sum_{k=1}^{4} \frac{1}{-1+2 k}\right] \cdot 2=\left[\frac{1}{5}+\frac{1}{7}+\frac{1}{3}+1\right] \cdot 2=\left[\frac{352}{105}\right]$ (b) Midpoints: $x_{k}^{*}=a+\left(-\frac{1}{2}+k\right) \Delta x=1+\left(-\frac{1}{2}+k\right) \times 2=2 k$ $\therefore f\left(x_{k}^{*}\right)=\frac{1}{2 k}$ $A=\left[\sum_{k=1}^{4} \frac{1}{2 k}\right] \cdot 2=\left[\frac{1}{14}+\frac{1}{6}+\frac{1}{8}+\frac{1}{2}\right] \cdot 2=\left[\frac{25}{12}\right]$ (c) Right end points: $x_{k}^{*}=x_{k}=a+k \Delta x=k+1 \times 2=2 k+1$ $\therefore f\left(x_{k}^{*}\right)=\frac{1}{1+2 k}$ $A=\left[\sum_{k=1}^{4} \frac{1}{2 k+1}\right] \cdot 2=\left[\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{3}\right]\cdot 2={\frac{496}{315}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.