Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 298: 27

Answer

(a) $46=A$ (b) $52=A$ $(\mathrm{c}) \mathrm{A}=58$

Work Step by Step

$\Delta x=\frac{-a+b}{n}=\frac{-2+6}{4}=1$ (a) Left end points: $x_{k}^{*}=x_{k-1}=a+(-1+k) \Delta x=2+(-1+k) \times 1=k+1$ $\therefore f\left(x_{k}^{*}\right)=1+3(1+k)=3 k+4$ $A=\left[\sum_{k=1}^{4}(4+3 k)\right] \cdot 1=10+13+16+7=46$ (b) Midpoints: $x_{k}^{*}=x_{k-1}=a+\left(-\frac{1}{2}+k\right) \Delta x=2+\left(-\frac{1}{2}+k\right) \times 1=\frac{3}{2}+k$ $\therefore f\left(x_{k}^{*}\right)=3\left(\frac{3}{2}+k\right)+1=\frac{11}{2}+3 k$ $A=\left[\sum_{k=1}^{4}\left(\frac{11}{2}+3 k\right)\right] \cdot 1=\frac{17}{2}+\frac{23}{2}+\frac{29}{2}+\frac{35}{2}=52$ (c) Right end points: $x_{k}^{*}=x_{k-1}=a+k \Delta x=2+k \times 1=2+k$ $\therefore f\left(x_{k}^{*}\right)=1+(2+k)3=7+3 k$ $A=\left[\sum_{k=1}^{4}(7+3 k)\right] \cdot 1=13+16+19+10= 58$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.