Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 298: 43

Answer

$$ 18 $$

Work Step by Step

Definition 5.4.3 $A=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$ $x_{k}^{*}$ is the left endpoint, so: $A=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n}\left(-\frac{(-1+k)^{2}9}{n^{2}}+9\right) \cdot \frac{3}{n}$ $f(x)=-x^{2}+9, \Delta x=\frac{3}{n}$ $A=\lim _{n \rightarrow+\infty} \frac{27}{n} \sum_{k=1}^{n} -\frac{27}{n^{3}}+1 \sum_{k=1}^{n-1} k^{2}$ $=\lim _{n \rightarrow+\infty}\left(\frac{27 n}{n}-\frac{(-1+n)(-1+2 n)27 n}{6 n^{3}}\right)$ $=\lim _{n \rightarrow+\infty}\left(\frac{-27 n(-1+n)(-1+2 n)+162 n^{3}}{6 n^{3}}\right)$ Rewrite sum in closed form: \[ A=-\frac{54}{6}+\frac{162}{6}=18 \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.