Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 298: 35

Answer

$$\frac{15}{4}$$

Work Step by Step

Definition 5.4 .3 $A=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$ $A=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} \frac{\frac{3 k}{n}+1}{2} \cdot \frac{3}{n}$ $x_{k}^{*}$ is the left endpoint, $f(x)=x / 2, \Delta x=\frac{3}{n}$ $A=\lim _{n \rightarrow+\infty} \frac{3}{2 n} \sum_{k=1}^{n} \frac{9}{2 n^{2}}+1 \sum_{k=1}^{n} k$ $=\lim _{n \rightarrow+\infty}\left(\frac{3 n}{2 n}+\frac{(1+n)9 n}{4 n^{2}}\right)$ $=\lim _{n \rightarrow+\infty}\left(\frac{9 n+15 n^{2}}{4 n^{2}}\right)$ Rewrite sum in closed form \[ \frac{15}{4}=A \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.