Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 298: 21

Answer

$$TRUE.$$

Work Step by Step

If we prove that for every positive integer $n$ \[ 1^{3}+2^{3}+\ldots+n^{3}=(1+2+\ldots+n)^{2} \] is satisfied, then the statement is true. For $n=1: 1^{3}=1=1^{2}:$ thus, the statement is true for $1=n$ For $n>1:$ We rewrite left side as \[ 1^{3}+2^{3}+\ldots+n^{3}=\sum_{k=1}^{k=n} k^{3} \] Using $[\text { Theorem5.4.2 }(c)$ ) we get: \[ \sum_{k=1}^{k=n} k^{3}=\left[\frac{(1+n) \cdot n}{2}\right]^{2} \] We use ${\text { Theorem5.4.2 }(a)}$ \[ \left[\frac{(1+n)\cdot n }{2}\right]^{2}=\left[\sum_{k=1}^{k=n} k\right]^{2}=[1+2+\ldots+n]^{2} \] Thus, from above we obtain \[ 1^{3}+2^{3}+\ldots+n^{3}=(1+2+\ldots+n)^{2} \] Thus, the statement is TRUE
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.