Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 298: 44

Answer

$$A=\frac{39}{4}$$

Work Step by Step

Definition 5.4.3 $A=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$ $x_{k}^{*}$ is the left endpoint, so: $A=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n}\left(-\frac{(-1+k)^{2}9}{4 n^{2}}+4\right) \cdot \frac{3}{n}$ $f(x)=-\frac{1}{4} x^{2}+4, \frac{3}{n}=\Delta x$ Rewrite sum in closed form: \[ A=\lim _{n \rightarrow+\infty} \frac{\left(-3+9 n+26 n^{2}\right)3}{8 n^{2}} \] $A=\frac{39}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.