Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 298: 45

Answer

$$ 16 $$

Work Step by Step

Definition 5.4.3 $A=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x$ $A=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n}\left( \frac{\frac{4 k}{n}+\frac{4(-1+k)}{n}}{2}\cdot2\right) \cdot \frac{4}{n} $ $=\lim _{n \rightarrow+\infty} \sum_{k=1}^{n}\frac{4}{n} \cdot\left(\frac{-4+8 k}{n}\right) $ $x_{k}^{*}$ is the midpoint, $f(x)=2 x, \Delta x=\frac{4}{n}$ $A=\lim _{n \rightarrow+\infty} \frac{32}{n^{2}} \sum_{k=1}^{n} -\frac{16}{n^{2}} +k \sum_{k=1}^{n} 1$ Rewrite sum in closed form: $=\lim _{n \rightarrow+\infty}-\frac{16 n}{n^{2}}+ \frac{(1+n)32 n}{2 n^{2}}$ \[ A=\frac{32}{2}=16 \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.