Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 4 - Integration - 4.4 The Definition Of Area As A Limit; Sigma Notation - Exercises Set 4.4 - Page 298: 30

Answer

(a) $\sum_{k=1}^{4} f\left(x_{k} *\right) \Delta x=-2$ (b) $\sum_{k=1}^{4} f\left(x_{k} *\right) \Delta x=-1$ $(\mathrm{c}) \sum_{k=1}^{4} f\left(x_{k} *\right) \Delta x=-2$

Work Step by Step

$\Delta x=\frac{-a+b}{n}=\frac{1+3}{4}=1$ (a) Left end points: $x_{k}^{*}=x_{k-1}=(-1+k) \Delta x+a=-1+(-1+k) \times 1=-2+k$ $\therefore f\left(x_{k}^{*}\right)=2(k-2)-(k-2)^{2}$ $\sum_{k=1}^{4} f\left(x_{k} *\right) \Delta x=\left[\sum_{k=1}^{4}\left[(-2+k)2-(-2+k)^{2}\right] \cdot 1=0+1+0-3=-2\right.$ (b) Midpoints: $x_{k}^{*}=a+\left(k-\frac{1}{2}\right) \Delta x=-1+\left(k-\frac{1}{2}\right) \times 1=-\frac{3}{2}+k$ $f\left(x_{k}^{*}\right)=2\left(-\frac{3}{2}+k\right)-\left(k-\frac{3}{2}\right)^{2}$ $\sum_{k=1}^{4} f\left(x_{k} *\right) \Delta x=\left[\sum_{k=1}^{4}\left[2\left(k-\frac{3}{2}\right)-\left(k-\frac{3}{2}\right)^{2}\right] \cdot 1=\frac{3}{4}+\frac{3}{4}-\frac{5}{4}-\frac{5}{4}+=-1\right.$ (c) Right end points: $x_{k}^{*}=x_{k}=a+k \Delta x=k-1 \times 1=-1+k $ $\therefore f\left(x_{k}^{*}\right)=2(k-1)-(k-1)^{2}$ $\sum_{k=1}^{4} f\left(x_{k} *\right) \Delta x=\left[\sum_{k=1}^{4}\left[2(-1+k)-(-1+k)^{2}\right] \cdot 1=1+0-3+0=-2\right.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.