Answer
$$35450$$
Work Step by Step
Given $$\sum_{k=1}^{100}(7k+1)$$
Since
$$\sum_{k=1}^{n}k=\frac{n(n+1)}{2},\ \ \sum_{k=1}^{n}1=n $$
Then
\begin{align*}
\sum_{k=1}^{100}(7k+1)&=7\sum_{k=1}^{100}k+\sum_{k=1}^{100}1\\
&=\frac{(7)(100)(101)}{2}+100 \\
&=35450
\end{align*}