Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.5 Complex Numbers - 8.5 Exercises - Page 663: 81

Answer

$7 - \frac{1}{2}\sqrt{2}\ i;7 + \frac{1}{2}\sqrt{2}\ i$

Work Step by Step

Given the quadratic equation \begin{equation} 2 x^2-28 x+45=-54. \end{equation} We bring the equation to the general form: $$\begin{align*} ax^2+bx+c&=0\\ 2x^2-28x+45+54&=0\\ 2x^2-28x+99&=0. \end{align*}$$ The quadratic equation can be best solved by the quadratic formula. We identify the constants $a$, $b$, $c$ from the general form of the equation and solve it using the quadratic formula: \begin{equation} \begin{aligned} a & =2, b=-28, c=99 \\ x & =\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \\ x & =\frac{28 \pm \sqrt{(-28)^2-4 \cdot 2\cdot(99)}}{2 \cdot 2}\\ & =\frac{28\pm \sqrt{-8}}{4} \\ & =\frac{28\pm 2\sqrt{2} i}{4} \\ &=7\pm\frac{1}{2}\sqrt 2 \ i. \end{aligned} \end{equation} The solution is \begin{equation} \begin{aligned} x&= 7 - \frac{1}{2}\sqrt{2}\ i\\ x& = 7 + \frac{1}{2}\sqrt{2}\ i. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.