Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.5 Complex Numbers - 8.5 Exercises - Page 663: 79

Answer

$0; 7-4i; 7+ 4i$

Work Step by Step

Given the cubic equation: \begin{equation} 0.25 x^3-3.5 x^2+16.25 x=0. \end{equation} First we factor out $0.25x$: $$0.25x(x^2-14x+65)=0.$$ We have: $$x=0\text{ or }x^2-14x+65=0.$$ The quadratic equation can be best solved by the quadratic formula. We identify the constants $a$, $b$, $c$ from the general form of the equation and solve it using the quadratic formula: \begin{equation} \begin{aligned} a&x^2+bx+c=0\\ a & =1, b=-14, c=65 \\ x & =\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \\ x & =\frac{14 \pm \sqrt{(-14)^2-4 \cdot 1\cdot(65)}}{2 \cdot 1}\\ & =\frac{14\pm \sqrt{-64}}{2} \\ & =\frac{14\pm 8i}{2} \\ &= 7\pm 4i. \end{aligned} \end{equation} The solution of the given equation is \begin{equation} \begin{aligned} x& =0\\ x&= 7-4i\\ x& =7+ 4i. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.