Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.5 Complex Numbers - 8.5 Exercises - Page 663: 77

Answer

$x=0$ $x=1$ $x= -\frac{7}{5}$

Work Step by Step

Given the cubic equation \begin{equation} 5 x^3+2 x^2-7 x=0. \end{equation} First we factor out $x$. $$x(5x^2+2x-7)=0.$$ One of the solutions is $$x=0.$$ The quadratic quation can be best solved by the quadratic formula. \begin{equation} \begin{aligned} 5x^2+2 x-7 &=0\\ a & =5, b=2, c=-7 \\ x & =\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \\ x & =\frac{-2 \pm \sqrt{2^2-4 \cdot 5\cdot(-7)}}{2 \cdot 5}\\ & =\frac{-2\pm \sqrt{144}}{10} \\ & =\frac{-2\pm 12}{10} \\ & =\frac{-1\pm 6}{5}. \end{aligned} \end{equation} The solution of the given equation is \begin{equation} \begin{aligned} x&= 0\\ x& =\frac{-1+ 6}{5}= 1\\ x& =\frac{-1- 6}{5}= -\frac{7}{5}. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.