Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.5 Complex Numbers - 8.5 Exercises - Page 663: 75

Answer

$x =-\frac{5}{4} +\frac{\sqrt{39}}{4}\ i$ $x=-\frac{5}{4}-\frac{\sqrt{39}}{4}\ i$

Work Step by Step

Given the quadratic equation \begin{equation} 2 x^2+5 x+4=-4. \end{equation} This equation can be best solved by the quadratic formula.after rewriting it in the form \begin{equation} \begin{aligned} ax^2+bx+c&=0\\ 2 x^2+5 x+4&=-4 \\ 2 x^2+5 x+8&=0\\ \end{aligned} \end{equation} Identify $a$, $b$, $c$ and determine the solutions:\begin{equation} \begin{aligned} a & =2, b=5, c=8 \\ x & =\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \\ x & =\frac{-5 \pm \sqrt{5^2-4 \cdot 2(8)}}{2 \cdot 2}\\ & =\frac{-5\pm \sqrt{-39}}{4} \\ &=\frac{-5\pm \sqrt{39}}{4}\ i. \end{aligned} \end{equation} The solution is \begin{equation} \begin{aligned} x& =-\frac{5}{4} +\frac{\sqrt{39}}{4}\ i\\ x& =-\frac{5}{4}-\frac{\sqrt{39}}{4}\ i. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.