Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.5 Complex Numbers - 8.5 Exercises - Page 663: 80

Answer

$0; -\frac{12+\sqrt{15} i}{3}; \frac{-12+\sqrt{15} i}{3}$

Work Step by Step

Given the cubic equation \begin{equation} 3 x^3+24 x^2+53 x=0. \end{equation} First we factor out $x$: $$x(3 x^2+24 x+53 )=0.$$ We have: $$x= 0\text{ or }3 x^2+24 x+53=0.$$ The quadratic equation can be best solved by the quadratic formula. We identify the constants $a$, $b$, $c$ from the general form of the equation and solve it using the quadratic formula: \begin{equation} \begin{aligned} a&x^2+bx+c=0\\ a & =3, b=24, c=53 \\ x & =\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \\ x & =\frac{-24 \pm \sqrt{(24)^2-4 \cdot 3\cdot(53)}}{2 \cdot 3}\\ & =\frac{-24\pm \sqrt{-60}}{6} \\ & =\frac{-24\pm 2\sqrt{15} i}{6} \\ &= \frac{-12\pm \sqrt{15} i}{3}. \end{aligned} \end{equation} The solution of the given equation is \begin{equation} \begin{aligned} x& =0\\ x&= -\frac{12+ \sqrt{15} i}{3}\\ x& =\frac{-12+\sqrt{15} i}{3}. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.