Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.5 Complex Numbers - 8.5 Exercises - Page 663: 78

Answer

$-\frac{1}{2}- \sqrt{2}; 0; -\frac{1}{2}+ \sqrt{2}$

Work Step by Step

Given the cubic equation \begin{equation} 8 x^3+4 x^2-14 x=0. \end{equation} First we factor out $2x$: $$2x(4x^2+2x-7)=0.$$ We have $$x=0\text{ or } 4x^2+2x-7=0.$$ The quadratic equation can be best solved by the quadratic formula. We identify the constants $a$, $b$, $c$ from the general form of the equation and solve it using the quadratic formula: \begin{equation} \begin{aligned} ax^2+bx+c&=0\\ a & =4, b=2, c=-7 \\ x & =\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \\ x & =\frac{-4 \pm \sqrt{4^2-4 \cdot 4\cdot(-7)}}{2 \cdot 4}\\ & =\frac{-4\pm \sqrt{128}}{8} \\ & =\frac{-4\pm \sqrt{64\cdot 2}}{8} \\ & =\frac{-4\pm 8 \sqrt{ 2}}{8} \\ &= -\frac{1}{2}\pm \sqrt{2}. \end{aligned} \end{equation} The solution of the given equation is \begin{equation} \begin{aligned} x& =-\frac{1}{2}- \sqrt{2}\\ x&= 0\\ x& =-\frac{1}{2}+ \sqrt{2}. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.