Intermediate Algebra: Connecting Concepts through Application

Published by Brooks Cole
ISBN 10: 0-53449-636-9
ISBN 13: 978-0-53449-636-4

Chapter 8 - Radical Functions - 8.5 Complex Numbers - 8.5 Exercises - Page 663: 76

Answer

$x=-\frac{1}{3} +\frac{2}{3}\sqrt{11}\ i$ $x=-\frac{1}{3} -\frac{2}{3}\sqrt{11}\ i$

Work Step by Step

Given the quadratic equation \begin{equation} 3 x^2+2 x+7=-8. \end{equation} This equation can be best solved by the quadratic formula after rewriting it in the form \begin{equation} \begin{aligned} ax^2+bx+c&=0\\ 3 x^2+2 x+7&=-8 \\ 3 x^2+2 x+15&=0. \end{aligned} \end{equation} Identify the constants $a$, $b$, $c$ and solve the equation: \begin{equation} \begin{aligned} a & =3, b=2, c=15 \\ x & =\frac{-b \pm \sqrt{b^2-4 a c}}{2 a} \\ x & =\frac{-2 \pm \sqrt{2^2-4 \cdot 3\cdot(15)}}{2 \cdot 3}\\ & =\frac{-2\pm \sqrt{-176}}{6} \\ & =\frac{-2\pm \sqrt{-16\cdot 11}}{6} \\ &=\frac{-2\pm 4\sqrt{11}}{6}\ i \\ &=\frac{-1\pm 2\sqrt{11}}{3}\ i. \end{aligned} \end{equation} The solution is \begin{equation} \begin{aligned} x& =-\frac{1}{3} +\frac{2}{3}\sqrt{11}\ i\\ x& =-\frac{1}{3} -\frac{2}{3}\sqrt{11}\ i. \end{aligned} \end{equation}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.