Precalculus: Mathematics for Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 1305071751
ISBN 13: 978-1-30507-175-9

Chapter 4 - Section 4.5 - Exponential and Logarithmic Functions - 4.5 Exercises - Page 368: 66

Answer

$x=\dfrac{-1+\sqrt{9+4e}}{2}$

Work Step by Step

$\ln(x-1)+\ln(x+2)=1$ Combine the logarithms on the left side of the equation as a product: $\ln(x-1)(x+2)=1$ $\ln(x^{2}+x-2)=1$ Write this equation in exponential form: $x^{2}+x-2=e^{1}$ $x^{2}+x-2=e$ Take the $e$ to the left side of the equation: $x^{2}+x-2-e=0$ $x^{2}+x-(2+e)=0$ Solve using the quadratic formula, which is: $x=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}$ For this particular equation, $a=1$, $b=1$ and $c=-(2+e)$ $x=\dfrac{-1\pm\sqrt{1^{2}-4(1)[-(2+e)]}}{2(1)}=\dfrac{-1\pm\sqrt{1-(4)(-2-e)}}{2}=$ $...=\dfrac{-1\pm\sqrt{1+8+4e}}{2}=\dfrac{-1\pm\sqrt{9+4e}}{2}$ The initial equation is undefined for $x=\dfrac{-1-\sqrt{9+4e}}{2}$, so we can discard this solution. Our final answer is: $x=\dfrac{-1+\sqrt{9+4e}}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.