Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Practice Exercises - Page 101: 31

Answer

No, see explanations.

Work Step by Step

Step 1. For $x\lt-1, x\ne-1$, $f(x)=\frac{x(x^2-1)}{|x^2-1|}==\frac{x(x^2-1)}{x^2-1}=x$, $\lim_{x\to-1^-}f(x)=-1$ Step 2. For $-1\lt x\lt1, x\ne-1, x\ne1$, $f(x)=\frac{x(x^2-1)}{|x^2-1|}==-\frac{x(x^2-1)}{x^2-1}=-x$, $\lim_{x\to-1^+}f(x)=-(-1)=1$, and $\lim_{x\to1^-}f(x)=-(1)=-1$ Step 3. For $x\gt1, x\ne1$, $f(x)=\frac{x(x^2-1)}{|x^2-1|}==\frac{x(x^2-1)}{x^2-1}=x$, $\lim_{x\to1^+}f(x)=1$ Step 4. Graph the function as shown. Step 5. We can see that the continuity can not be extended at $x=1$ or $x=-1$ because the limits do not exist at these points.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.