Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 84

Answer

$-\displaystyle \frac{1}{2}\ln|e^{-2x}-3|+C$

Work Step by Step

$\displaystyle \int\frac{e^{-2x}}{e^{-2x}-3}dx=\int e^{-2x}(e^{-2x}-3)^{-1}dx$ Shortcut to apply: $\displaystyle \quad \int g\cdot u^{-1}dx=\frac{g}{u'}\ln|u|+C$ $\left[\begin{array}{ll} g(x)=e^{-2x}, & u(x)=e^{-2x}-3\\ & u'(x)=-2e^{-2x} \end{array}\right]$ $=\displaystyle \frac{e^{-2x}}{-2e^{-2x}}\ln|e^{-2x}-3|+C$ = $-\displaystyle \frac{1}{2}\ln|e^{-2x}-3|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.