Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 73

Answer

$f(x)=\displaystyle \frac{1}{8}(x^{2}+1)^{4}-\frac{1}{8}$

Work Step by Step

Slope of tangent line = $f'(x)=x(x^{2}+1)^{3}$ so, $f(x)=\displaystyle \int x(x^{2}+1)^{3}dx=$ Substitute: $\left[\begin{array}{ll} u=x^{2}+1, & du=2xdx\\ & xdx=du/2 \end{array}\right]$ $f(x)=\displaystyle \frac{1}{2}\int u^{3}du\qquad$ apply the power rule: $=\displaystyle \frac{1}{8}u^{4}+C$ $=\displaystyle \frac{1}{8}(x^{2}+1)^{4}+C.$ Given that $f(0)=0$, we find $C:$ $\displaystyle \frac{1}{8}(0+1)^{4}+C=0$ $C=-\displaystyle \frac{1}{8}$ Thus, $f(x)=\displaystyle \frac{1}{8}(x^{2}+1)^{4}-\frac{1}{8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.