Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 71

Answer

$ \displaystyle \frac{2^{3x+4}-2^{-3x+4}}{3\ln 2}+C$

Work Step by Step

$\displaystyle \int(2^{3x+4}+2^{-3x+4})dx=\int(2^{3x+4})dx+\int(2^{-3x+4})dx$ Shortcut formula: $\displaystyle \qquad\int c^{ax+b}dx=\frac{\mathrm{l}}{a\ln c}\cdot c^{ax+b}+C$ Apply with $ \left[\begin{array}{l} c=2\\ a=3\\ b=4 \end{array}\right]$ and $\left[\begin{array}{l} c=2\\ a=-3\\ b=4 \end{array}\right]$ $= \displaystyle \frac{2^{3x+4}}{3\ln 2}+\frac{2^{-3x+4}}{-3\ln 2}+C$ =$ \displaystyle \frac{2^{3x+4}-2^{-3x+4}}{3\ln 2}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.