Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 72

Answer

$\displaystyle \frac{-1.1^{-x+4}+1.1^{x+4}}{\ln(1.1)}+C$

Work Step by Step

$\displaystyle \int(1.1^{-x+4}+1.1^{x+4})dx=\int(1.1^{-x+4})dx+\int(1.1^{x+4})dx$ Shortcut formula: $\displaystyle \qquad\int c^{ax+b}dx=\frac{\mathrm{l}}{a\ln c}\cdot c^{ax+b}+C$ Apply with $ \left[\begin{array}{l} c=1.1\\ a=-1\\ b=4 \end{array}\right]$ and $\left[\begin{array}{l} c=1.1\\ a=1\\ b=4 \end{array}\right]$ $=\displaystyle \frac{1.1^{-x+4}}{(-1)\ln(1.1)}+\frac{1.1^{x+4}}{(1)\ln(1.1)}+C$ = $\displaystyle \frac{-1.1^{-x+4}+1.1^{x+4}}{\ln(1.1)}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.