Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 78

Answer

$-\displaystyle \frac{1}{50(5x^{2}-3)^{5}}+C$

Work Step by Step

$\displaystyle \int\frac{x}{(5x^{2}-3)^{6}}dx=\int x(5\mathrm{x}^{2}-3)^{-6}dx=$ Shortcut to apply: $\displaystyle \quad\int g\cdot u^{n}dx=\frac{g}{u'}\cdot\frac{u^{n+1}}{n+1}+C \quad ($if $n\neq-1)$ $\left[\begin{array}{lll} g(x)=x, & u(x)=5x^{2}-3, & n=-6\\ & u'(x)=10x & \end{array}\right]$ $ =\displaystyle \frac{x}{10x}\cdot\frac{(5x^{2}-3)^{-5}}{-5}+C$ $=\displaystyle \frac{(5x^{2}-3)^{-5}}{-50}+C$ = $-\displaystyle \frac{1}{50(5x^{2}-3)^{5}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.