Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 81

Answer

$\displaystyle \frac{1}{4}e^{x^{4}-8}+C$

Work Step by Step

$\displaystyle \int x^{3}e^{(x^{4}-8)}dx=$ Shortcut to apply: $\displaystyle \quad \int g\cdot e^{u}dx=\frac{g}{u'}e^{u}+C$ $\left[\begin{array}{ll} g(x)=x^{3}, & u(x)=x^{4}-8,\\ & u'(x)=4x^{3} \end{array}\right]$ $=\displaystyle \frac{x^{3}}{4x^{3}}e^{x^{4}-8}+C$ = $\displaystyle \frac{1}{4}e^{x^{4}-8}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.