Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 76

Answer

$f(x)=\displaystyle \frac{1}{2}e^{x^{2}-2x}+\frac{1}{2}$

Work Step by Step

Slope of tangent line: $f'(x)=(x-1)e^{x^{2}-2x}$ so, $f(x)=\displaystyle \int(x-1)e^{x^{2}-2x}dx=$ Substitute: $\left[\begin{array}{ll} u=x^{2}-2x & du=(2x-2)dx\\ & du=2(x-1)dx\\ & (x-1)dx=du/2 \end{array}\right]$ $f(x)=\displaystyle \frac{1}{2}\int e^{u}du$ $=\displaystyle \frac{1}{2}e^{u}+C \qquad$ bring the variable $x$ back $=\displaystyle \frac{1}{2}e^{x^{2}-2x}+C $ Given that $f(2)=1$, we find $C:$ $\displaystyle \frac{1}{2}e^{2^{2}-2(2)}+C =1$ $\displaystyle \frac{1}{2}\cdot e^{0}+C=1$ $C=1-\displaystyle \frac{1}{2}=\frac{1}{2}$ Thus, $f(x)=\displaystyle \frac{1}{2}e^{x^{2}-2x}+\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.