Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 82

Answer

$-\displaystyle \frac{1}{4}e^{(-x^{4}+8)}+C$

Work Step by Step

$\displaystyle \int\frac{x^{3}}{e^{(x^{4}-8)}}dx=\int x^{3}\cdot e^{-(x^{4}-8)}dx=\int x^{3}\cdot e^{-x^{4}+8}dx$ Shortcut to apply: $\displaystyle \quad \int g\cdot e^{u}dx=\frac{g}{u'}e^{u}+C$ $\left[\begin{array}{ll} g(x)=x^{3}, & u(x)=-x^{4}+8,\\ & u'(x)=-4x^{3} \end{array}\right]$ $=\displaystyle \frac{x^{3}}{-4x^{3}}e^{-x^{4}+8}+C$ = $-\displaystyle \frac{1}{4}e^{(-x^{4}+8)}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.