Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 75

Answer

$f(x)=\displaystyle \frac{1}{2}e^{x^{2}-1}$

Work Step by Step

Slope of tangent line = $f'(x)=xe^{x^{2}-1}$ so, $f(x)=\displaystyle \int xe^{x^{2}-1}dx=$ Substitute: $\left[\begin{array}{ll} u=x^{2}-1 & du=2xdx\\ & xdx=du/2 \end{array}\right]$ $f(x)=\displaystyle \frac{1}{2}\int e^{u}du$ $=\displaystyle \frac{1}{2}e^{u}+C \qquad$ bring the variable $x$ back: $=\displaystyle \frac{1}{2}e^{x^{2}-1}+C $ Given that $f(1)=\displaystyle \frac{1}{2}$, we find $C:$ $\displaystyle \frac{1}{2}e^{1-1}+C =\displaystyle \frac{1}{2}$ $\displaystyle \frac{1}{2}\cdot 1+C=\frac{1}{2}$ $C=0$ Thus, $f(x)=\displaystyle \frac{1}{2}e^{x^{2}-1}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.