Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 68

Answer

$-\displaystyle \frac{4^{-2x}}{2\ln 4}+C$

Work Step by Step

$\displaystyle \int 4^{-2x}dx$= Shortcut formula: $\displaystyle \qquad\int c^{ax+b}dx=\frac{\mathrm{l}}{a\ln c}\cdot c^{ax+b}+C$ Apply with $ \left[\begin{array}{l} c=4\\ a=-2\\ b=0 \end{array}\right]$ $=\displaystyle \frac{1}{-2\ln 4}\cdot 4^{-2x}$ = $-\displaystyle \frac{4^{-2x}}{2\ln 4}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.