Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 83

Answer

$\displaystyle \frac{1}{6}\ln|1+2e^{3x}|+C$

Work Step by Step

$\displaystyle \int\frac{e^{3x}}{1+2e^{3x}}dx=\int e^{3x}(1+2e^{3x})^{-1}dx=$ Shortcut to apply: $\displaystyle \quad \int g\cdot u^{-1}dx=\frac{g}{u'}\ln|u|+C$ $\left[\begin{array}{ll} g(x)=e^{3x}, & u(x)=1+2e^{3x}\\ & u'(x)=2e^{3x}\cdot 3=6e^{3x} \end{array}\right]$ $=\displaystyle \frac{e^{3x}}{6e^{3x}}\ln|u|+C$ = $\displaystyle \frac{1}{6}\ln|1+2e^{3x}|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.