Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 70

Answer

$\displaystyle \frac{1}{6}(3x-2)\cdot|3x-2|+C$

Work Step by Step

$\displaystyle \int|3x-2|dx=$ Shortcut formula: $\displaystyle \qquad\int|ax+b|dx =\displaystyle \frac{1}{2a}(ax+b)|ax+b|+C$ Apply with $ \left[\begin{array}{l} a=3\\ b=-2 \end{array}\right]$ $=\displaystyle \frac{1}{2(3)}(3x-2)|3x-2|+C$ = $\displaystyle \frac{1}{6}(3x-2)\cdot|3x-2|+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.