Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 74

Answer

$f(x)=\displaystyle \frac{1}{2}\ln|x^{2}+1|-\frac{1}{2}\ln 2$

Work Step by Step

Slope of tangent line = $f'(x)=\displaystyle \frac{x}{x^{2}+1}$ so, $f(x)=\displaystyle \int\frac{x}{x^{2}+1}dx=$ Substitute: $\left[\begin{array}{ll} u=x^{2}+1 & du=2xdx\\ & xdx=du/2 \end{array}\right]$ $f(x)=\displaystyle \frac{1}{2}\int u^{-1}du \qquad$ apply power rule ($n=-1$): $=\displaystyle \frac{1}{2}\ln|u|+C \qquad$ bring the variable $x$ back: $=\displaystyle \frac{1}{2}\ln|x^{2}+1|+C \qquad$ we can remove the absolute value brackets because $x^{2}+1$ is never less than $1.$ Given that $f(1)=0$, we find $C:$ $\displaystyle \frac{1}{2}\ln|1+1|+C =0$ $C=-\displaystyle \frac{1}{2}\ln 2$ Thus, $f(x)=\displaystyle \frac{1}{2}\ln|x^{2}+1|-\frac{1}{2}\ln 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.