Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 13 - Section 13.2 - Substitution - Exercises - Page 972: 80

Answer

$ \displaystyle \frac{(1+2e^{x})^{3/2}}{3}+C$

Work Step by Step

$\displaystyle \int e^{x}\sqrt{1+2e^{x}}dx=\int e^{x}(1+2e^{x})dx$ Shortcut to apply: $\displaystyle \quad\int g\cdot u^{n}dx=\frac{g}{u'}\cdot\frac{u^{n+1}}{n+1}+C \quad ($if $\quad n\neq-1)$ $\left[\begin{array}{ll} g(x)=e^{x}, & u(x)=1+2e^{x},\\ & u'(x)=2e^{x} \end{array}\right]$ $=\displaystyle \frac{e^{x}}{2e^{x}}\cdot\frac{(1+2e^{x})^{3/2}}{3/2}+C$ $=\displaystyle \frac{(1+2e^{x})^{3/2}}{3}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.