Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.1 - Derivatives of Powers, Sums, and Constant Multiples - Exercises - Page 795: 71

Answer

see work for proof.

Work Step by Step

The derivative function is defined as$\\$ $\displaystyle \frac{d}{dx}[f(x)]=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}=\lim_{h\rightarrow 0}\frac{(x+h)^{4}-x^{4}}{h}\\\\$ $=\displaystyle \lim_{h\rightarrow 0}\frac{x^{4}+4x^{3}h+6x^{2}h^{2}+4xh^{3}+h^{4}-x^{4}}{h}\\\\$ $=\displaystyle \lim_{h\rightarrow 0}\frac{4x^{3}h+6x^{2}h^{2}+4xh^{3}+h^{4}}{h}\\\\$ $=\displaystyle \lim_{h\rightarrow 0}\frac{h(4x^{3}+6x^{2}h+4xh^{2}+h^{3})}{h}\\\\$ $=\displaystyle \lim_{h\rightarrow 0}(4x^{3}+6x^{2}h+4xh^{2}+h^{3})=4x^{3}\\\\$ (all other terms approach 0)$\\$ So,$\\\\$ $\displaystyle \frac{d}{dx}[x^{4}]=4x^{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.