Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.1 - Derivatives of Powers, Sums, and Constant Multiples - Exercises - Page 795: 23

Answer

$g^{\prime}(x)=-\displaystyle \frac{1}{x^{2}}+\frac{2}{x^{3}}$

Work Step by Step

SUMMARY: The Power Rule$:\ \ \ [x^{n}]^{\prime}=nx^{n-1 } $ Sum Rule: $\ \ \ \ \ \ [f\pm g]^{\prime}(x)=f^{\prime}(x)\pm g^{\prime}(x) $ Constant Multiple Rule:$\ \ \ [cf]^{\prime}(x)=cf^{\prime}(x) $ Constant times x:$\ \ \ \displaystyle \frac{d}{dx}(cx)=c $ Constant:$\displaystyle \ \ \ \ \ \frac{d}{dx}(c)=0 $ -------------------------------- $g^{\prime}(x)=[x^{-1}-x^{-2}]^{\prime}=... $Sum Rule, $=[x^{-1}]^{\prime}-[x^{-2}]^{\prime}=$... individually: $[x^{-1}]^{\prime}$=...power rule...$=-1\cdot x^{-2}=-x^{-2}$ $[x^{-2}]^{\prime}$=...power rule...$=-2x^{-3}$ So $g^{\prime}(x)=-x^{-2}-(-2x^{-3})$ $g^{\prime}(x)=-x^{-2}+2x^{-3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.