Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.1 - Derivatives of Powers, Sums, and Constant Multiples - Exercises - Page 795: 43

Answer

$1.2(1-\displaystyle \frac{|x|}{x})$

Work Step by Step

SUMMARY (rules in differential notation): 1. The Power Rule$:\ \ \ \displaystyle \frac{d}{dx}[x^{n}]=n\cdot x^{n-1 } $ 2. Sum Rule: $\displaystyle \ \ \ \frac{d}{dx}[f\pm g](x)=\frac{d}{dx}[f(x)]\pm\frac{d}{dx}[g(x)] $ 3. Constant Multiple Rule:$\ \ \displaystyle \frac{d}{dx}[cf(x)]=c\cdot\frac{d}{dx}[f(x)] $ 4. Constant times x:$\ \ \ \displaystyle \frac{d}{dx}(cx)=c $ 5. Constant:$\displaystyle \ \ \ \ \ \frac{d}{dx}(c)=0 $ 6. $\displaystyle \frac{d}{dx}(|\mathrm{x}|)=\frac{|x|}{x}$, (from sec.10.6) ------------------ $ \displaystyle \frac{d}{dx}[1.2x-1.2|x|)$ = $\ \ \ $...(2) $=\displaystyle \frac{d}{dx}(1.2x)-\frac{d}{dx}(1.2|x|)$ = $\ \ \ $...($3$) $=1.2\displaystyle \frac{d}{dx}( x^{1})-1.2\frac{d}{dx}(|x|)$ = $\ \ \ $...($1,\ \ 6 $) $=1.2(1)-\displaystyle \frac{1.2|x|}{x}$ $=1.2-\displaystyle \frac{1.2|x|}{x}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.