Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.1 - Derivatives of Powers, Sums, and Constant Multiples - Exercises - Page 795: 51

Answer

$\displaystyle \frac{dV}{dr}=4\pi r^{2}$

Work Step by Step

SUMMARY (rules in differential notation): 1. The Power Rule$:\ \ \ \displaystyle \frac{d}{dx}[x^{n}]=n\cdot x^{n-1 } $ 2. Sum Rule: $\displaystyle \ \ \ \frac{d}{dx}[f\pm g](x)=\frac{d}{dx}[f(x)]\pm\frac{d}{dx}[g(x)] $ 3. Constant Multiple Rule:$\ \ \displaystyle \frac{d}{dx}[cf(x)]=c\cdot\frac{d}{dx}[f(x)] $ 4. Constant times x:$\ \ \ \displaystyle \frac{d}{dx}(cx)=c $ 5. Constant:$\displaystyle \ \ \ \ \ \frac{d}{dx}(c)=0 $ ------------------ $ \displaystyle \frac{dV}{dr}= \frac{d}{dr}[\frac{4}{3}\pi r^{3}]$= $\ \ \ $...($ 3, \pi$ is a constant too) $= \displaystyle \frac{4}{3}\pi\cdot\frac{d}{dr}[r^{3}]$= $\ \ \ $...($1$) $= \displaystyle \frac{4}{3}\pi(3r^{2})$ $\displaystyle \frac{dV}{dr}=4\pi r^{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.