Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.1 - Derivatives of Powers, Sums, and Constant Multiples - Exercises - Page 795: 41

Answer

$2.6x^{0.3}+\displaystyle \frac{1.2}{x^{2.2}}$

Work Step by Step

SUMMARY (rules in differrential notation): 1. The Power Rule$:\ \ \ \displaystyle \frac{d}{dx}[x^{n}]=n\cdot x^{n-1 } $ 2. Sum Rule: $\displaystyle \ \ \ \frac{d}{dx}[f\pm g](x)=\frac{d}{dx}[f(x)]\pm\frac{d}{dx}[g(x)] $ 3. Constant Multiple Rule:$\ \ \displaystyle \frac{d}{dx}[cf(x)]=c\cdot\frac{d}{dx}[f(x)] $ 4. Constant times x:$\ \ \ \displaystyle \frac{d}{dx}(cx)=c $ 5. Constant:$\displaystyle \ \ \ \ \ \frac{d}{dx}(c)=0 $ ------------------ $\displaystyle \frac{d}{dx}(2x^{1.3}-x^{-1.2})$ = $\ \ \ $...(2) $=\displaystyle \frac{d}{dx}(2x^{1.3})-\frac{d}{dx}(x^{-1.2})$ = $\ \ \ $...($3$) $=2\displaystyle \frac{d}{dx}( x^{1.3})-\frac{d}{dx}(x^{-1.2})$ = $\ \ \ $...($1$) $=2(1.3x^{0.3})-(-1.2x^{-2.2})$ $=2.6x^{0.3}+\displaystyle \frac{1.2}{x^{2.2}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.