Answer
$2.6x^{0.3}+\displaystyle \frac{1.2}{x^{2.2}}$
Work Step by Step
SUMMARY (rules in differrential notation):
1. The Power Rule$:\ \ \ \displaystyle \frac{d}{dx}[x^{n}]=n\cdot x^{n-1 } $
2. Sum Rule: $\displaystyle \ \ \ \frac{d}{dx}[f\pm g](x)=\frac{d}{dx}[f(x)]\pm\frac{d}{dx}[g(x)] $
3. Constant Multiple Rule:$\ \ \displaystyle \frac{d}{dx}[cf(x)]=c\cdot\frac{d}{dx}[f(x)] $
4. Constant times x:$\ \ \ \displaystyle \frac{d}{dx}(cx)=c $
5. Constant:$\displaystyle \ \ \ \ \ \frac{d}{dx}(c)=0 $
------------------
$\displaystyle \frac{d}{dx}(2x^{1.3}-x^{-1.2})$ = $\ \ \ $...(2)
$=\displaystyle \frac{d}{dx}(2x^{1.3})-\frac{d}{dx}(x^{-1.2})$ = $\ \ \ $...($3$)
$=2\displaystyle \frac{d}{dx}( x^{1.3})-\frac{d}{dx}(x^{-1.2})$ = $\ \ \ $...($1$)
$=2(1.3x^{0.3})-(-1.2x^{-2.2})$
$=2.6x^{0.3}+\displaystyle \frac{1.2}{x^{2.2}}$