Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.1 - Derivatives of Powers, Sums, and Constant Multiples - Exercises - Page 795: 28

Answer

$h^{\prime}(x)=-\displaystyle \frac{2}{x^{2}}+\frac{6}{x^{4}}-\frac{4}{x^{5}}$

Work Step by Step

SUMMARY: The Power Rule$:\ \ \ [x^{n}]^{\prime}=nx^{n-1 } $ Sum Rule: $\ \ \ \ \ \ [f\pm g]^{\prime}(x)=f^{\prime}(x)\pm g^{\prime}(x) $ Constant Multiple Rule:$\ \ \ [cf]^{\prime}(x)=cf^{\prime}(x) $ Constant times x:$\ \ \ \displaystyle \frac{d}{dx}(cx)=c $ Constant:$\displaystyle \ \ \ \ \ \frac{d}{dx}(c)=0 $ -------------------------------- $h^{\prime}(x)=[2x^{-1}-2x^{-3}+x^{-4}]^{\prime}=... $Sum Rule, $=[2x^{-1}]^{\prime}-[2x^{-3}]^{\prime}+[x^{-4}]^{\prime}=$... individually: $[2x^{-1}]^{\prime}=...$Constant Multiple Rule $=2[x^{-1}]^{\prime}$=...power rule...$=2(-1\displaystyle \cdot x^{-2})=-\frac{2}{x^{2}}$ $[2x^{-3}]^{\prime}=...$Constant Multiple Rule $=2[x^{-3}]^{\prime}$=...power rule...$= 2(-3x^{-4})=-\displaystyle \frac{6}{x^{4}}$ $[x^{-4}]^{\prime}$=...power rule...$=-4x^{-5}=-\displaystyle \frac{4}{x^{5}}$ So $h^{\prime}(x)=-\displaystyle \frac{2}{x^{2}}-(-\frac{6}{x^{4}})+(-\frac{4}{x^{5}})$ $h^{\prime}(x)=-\displaystyle \frac{2}{x^{2}}+\frac{6}{x^{4}}-\frac{4}{x^{5}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.