Answer
$t^{\prime}(x)=1$
Work Step by Step
SUMMARY:
The Power Rule$:\ \ \ [x^{n}]^{\prime}=nx^{n-1 } $
Sum Rule: $\ \ \ \ \ \ [f\pm g]^{\prime}(x)=f^{\prime}(x)\pm g^{\prime}(x) $
Constant Multiple Rule:$\ \ \ [cf]^{\prime}(x)=cf^{\prime}(x) $
Constant times x:$\ \ \ \displaystyle \frac{d}{dx}(cx)=c $
Constant:$\displaystyle \ \ \ \ \ \frac{d}{dx}(c)=0 $
--------------------------------
Rewriting, $t(x)=\displaystyle \frac{2x}{x}+\frac{x^{2}}{x}=2+x^{1}$
Two terms added/subtracted: Sum Rule,
first term $(2)$ : Constant Rule,
second term: Power Rule:
$t^{\prime}(x)=0+1$
$t^{\prime}(x)=1$