Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.1 - Derivatives of Powers, Sums, and Constant Multiples - Exercises - Page 795: 32

Answer

$r^{\prime}(x)=\displaystyle \frac{8x}{3}-\frac{3.2x^{2.2}}{6}+\frac{4}{3x^{3}}$

Work Step by Step

SUMMARY: The Power Rule$:\ \ \ [x^{n}]^{\prime}=nx^{n-1 } $ Sum Rule: $\ \ \ \ \ \ [f\pm g]^{\prime}(x)=f^{\prime}(x)\pm g^{\prime}(x) $ Constant Multiple Rule:$\ \ \ [cf]^{\prime}(x)=cf^{\prime}(x) $ Constant times x:$\ \ \ \displaystyle \frac{d}{dx}(cx)=c $ Constant:$\displaystyle \ \ \ \ \ \frac{d}{dx}(c)=0 $ -------------------------------- $r^{\prime}(x)=[ \displaystyle \frac{4}{3}x^{2} +\displaystyle \frac{1}{6}x^{3.2}-\frac{2}{3}x^{-2}+4]^{\prime}=... $Sum Rule, $=[ \displaystyle \frac{4}{3}x^{2}]^{\prime} + [\displaystyle \frac{1}{6}x^{3.2}]^{\prime}-[\frac{2}{3}x^{-2}]^{\prime}+[4]^{\prime}=...$Constant Multiple Rule $=\displaystyle \frac{4}{3}[ x^{2}]^{\prime} -\displaystyle \frac{1}{6}[x^{3.2}]^{\prime}-\frac{2}{3}[x^{-2}]^{\prime}+4[x^{0}]^{\prime}=$...Power Rule... $=\displaystyle \frac{4}{3}[ 2x] -\displaystyle \frac{1}{6}[3.2x^{2.2}]-\frac{2}{3}[-2x^{-3}]^{\prime}+4[0]=$ $r^{\prime}(x)=\displaystyle \frac{8x}{3}-\frac{3.2x^{2.2}}{6}+\frac{4}{3x^{3}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.