Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Section 11.1 - Derivatives of Powers, Sums, and Constant Multiples - Exercises - Page 795: 27

Answer

$h^{\prime}(x)=-\displaystyle \frac{2}{x^{3}}-\frac{6}{x^{4}}$

Work Step by Step

SUMMARY: The Power Rule$:\ \ \ [x^{n}]^{\prime}=nx^{n-1 } $ Sum Rule: $\ \ \ \ \ \ [f\pm g]^{\prime}(x)=f^{\prime}(x)\pm g^{\prime}(x) $ Constant Multiple Rule:$\ \ \ [cf]^{\prime}(x)=cf^{\prime}(x) $ Constant times x:$\ \ \ \displaystyle \frac{d}{dx}(cx)=c $ Constant:$\displaystyle \ \ \ \ \ \frac{d}{dx}(c)=0 $ -------------------------------- $h^{\prime}(x)=[x^{-2}+2x^{-3}]^{\prime}=... $Sum Rule, $=[x^{-2}]^{\prime}+[2x^{-3}]^{\prime}=$... individually: $[x^{-2}]^{\prime}$=...power rule...$=-2x^{-3}$ $[2x^{-3}]^{\prime}=...$Constant Multiple Rule$...$ $=2[x^{-3}]^{\prime}$=...power rule...$=2(-3x^{-4})=-6x^{-4}$ So $h^{\prime}(x)=-2x^{-3}-6x^{-4}$ $h^{\prime}(x)=-\displaystyle \frac{2}{x^{3}}-\frac{6}{x^{4}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.