Elementary and Intermediate Algebra: Concepts & Applications (6th Edition)

Published by Pearson
ISBN 10: 0-32184-874-8
ISBN 13: 978-0-32184-874-1

Chapter 5 - Polynomials and Factoring - 5.5 Factoring Sums or Differences of Cubes - 5.5 Exercise Set - Page 338: 30



Work Step by Step

Factoring the $GCF= ab^2 ,$ the given expression, $ ab^5+1000ab^2 ,$ is equivalent to \begin{array}{l} ab^2(b^3+1000) .\end{array} Using $a^3+b^3=(a+b)(a^2-ab+b^2)$ or the factoring of 2 cubes, the factored form of the expression, $ ab(b^3+1000) ,$ is \begin{array}{l} ab(b+10)[ (b)^2-(b)(10)+(10)^2] \\\\= ab(b+10)(b^2-10b+100) .\end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.