Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 15 - Oscillations - Problems - Page 442: 97b

Answer

$3.14\;rad/s$

Work Step by Step

The maximum kinetic energy of a torsion pendulum is given by $E^{max}_k=\frac{1}{2}I\omega^2_m$ And the maximum potential energy of a torsion pendulum is given by $E^{max}_p=\frac{1}{2}\kappa\theta^2_m$ The value of $E^{max}_k$ should be equal to $E^{max}_p$ Therefore, $\frac{1}{2}I\omega^2_m=\frac{1}{2}\kappa\theta^2_m$ or, $\omega_m=\theta_m\sqrt {\frac{\kappa}{I}}$ From the given graph, $\kappa=\frac{4\times10^{-3}}{0.2}\;N.m/rad=0.02\;N.m/rad$ and $\theta_m=0.2\;rad$. We have already obtained that $I=8.106\times10^{-5}\;kg.m^2$ Putting the given values, we obtain $\omega_m=(0.2)\sqrt {\frac{0.02}{8.106\times10^{-5}}}\;rad/s$ or, $\omega_m=3.14\;rad/s$ Therefore, the maximum angular speed of the disk is $3.14\;rad/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.