Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 15 - Oscillations - Problems - Page 442: 104a

Answer

$0.102\;kg/s$

Work Step by Step

The amplitude of the damped oscillations is expressed as $a=x_me^{-\frac{bt}{2m}}$ or, $e^{-\frac{bt}{2m}}=\frac{a}{x_m}$ or, $-\frac{bt}{2m}=\ln{\frac{a}{x_m}}$ or, $\frac{bt}{2m}=\ln{\frac{x_m}{a}}\;............(1)$ Now, $\omega=\sqrt {\frac{k}{m}}$ $T=\frac{2\pi}{\omega}=2\pi\sqrt {\frac{m}{k}}$ Here, $t=4T=8\pi\sqrt {\frac{m}{k}}$ Now, $\frac{bt}{2m}=\frac{b}{2m}\times 8\pi\sqrt {\frac{m}{k}}=4b\pi\sqrt {\frac{1}{mk}}$ Substituting in eq. $1$, we obtain $4b\pi\sqrt {\frac{1}{mk}}=\ln{\frac{x_m}{a}}$ or, $b=\frac{\sqrt {mk}}{4\pi}\times\ln{\frac{x_m}{a}}$ Substituting the given values, $b=\frac{\sqrt {2\times10}}{4\times\pi}\times\ln{\frac{4}{3}}$ or, $\boxed{b=0.102\;kg/s}$ Therefore, the value of $b$ is $0.102\;kg/s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.