Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.6 Solving Equations - A.6 Assess Your Understanding - Page A52: 90

Answer

$\{-1,\frac{1}{3}\}$

Work Step by Step

Add $\frac{1}{3}$ to both sides. $x^2+\dfrac{2}{3}x-\dfrac{1}{3}+\dfrac{1}{3}=0+\dfrac{1}{3}$ Simplify. $x^2+\dfrac{2}{3}x=\dfrac{1}{3}$ Complete the square by adding $\left(\dfrac{\frac{2}{3}}{2}\right)^2=\dfrac{1}{9}$ to both sides. $x^2+\dfrac{2}{3}x+\dfrac{1}{9}=\dfrac{1}{3}+\dfrac{1}{9}$ Simplify. $x^2+\dfrac{2}{3}x+\dfrac{1}{9}=\dfrac{3+1}{9}$ $x^2+\dfrac{2}{3}x+\dfrac{1}{9}=\dfrac{4}{9}$ Factor the left side. $\left(x+\dfrac{1}{3}\right)^2=\dfrac{4}{9}$ Take the square root of both sides: $x+\dfrac{1}{3}=\pm \sqrt {\dfrac{4}{9}}$ $x+\dfrac{1}{3}=\pm \dfrac{2}{3}$ Split the expression to obtain: $x+\dfrac{1}{3}=\dfrac{2}{3}\quad $ or $\quad x+\dfrac{1}{3}=-\dfrac{2}{3}$ Subtract $\frac{1}{3}$ from both sides of both equations. $x+\dfrac{1}{3}-\dfrac{1}{3}=\dfrac{2}{3}-\dfrac{1}{3}\quad $ or $\quad x+\dfrac{1}{3}-\dfrac{1}{3}=-\dfrac{2}{3}-\dfrac{1}{3}$ Simplify. $x=\dfrac{1}{3}\quad $ or $\quad x=-1$ Hence, the solution set is $\{-1,\frac{1}{3}\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.