Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.6 Solving Equations - A.6 Assess Your Understanding - Page A51: 79

Answer

$\{-\frac{3}{4},2\}$

Work Step by Step

Multiply both sides by the LCD $x(x-3)$ to get rid f the denominators: $x(x-3) \cdot \left [\dfrac{4(x-2)}{x-3}+\dfrac{3}{x}\right ]=x(x-3) \cdot \left [\dfrac{-3}{x(x-3)}\right ]$ Use distributive property. $x(x-3) \cdot \left (\frac{4(x-2)}{x-3}\right )+x(x-3) \cdot \left (\frac{3}{x}\right )=x(x-3) \cdot \left (\frac{-3}{x(x-3)}\right )$ Cancel common factors. $\begin{align*} \require{cancel} x\cancel{(x-3)} \cdot \left (\frac{4(x-2)}{\cancel{x-3}}\right )+\cancel{x}(x-3) \cdot \left (\frac{3}{\cancel{x}}\right )&=\cancel{x(x-3)} \cdot \left (\frac{-3}{\cancel{x(x-3)}}\right )\\ \\4x(x-2)+3(x-3) &=-3 \end{align*}$ Use distributive property. $4x^2-8x+3x-9 =-3$ Simplify. $4x^2-5x-9 =-3$ Add $3$ to both sides. $4x^2-5x-9+3 =-3+3$ Simplify. $4x^2-5x-6 =0$ Rewrite $-5x$ as $-8x+3x$. $4x^2-8x+3x-6 =0$ Group the terms. $(4x^2-8x)+(3x-6) =0$ Factor out the GCF in each group. $4x(x-2)+3(x-2) =0$ Factor out $(x-2)$. $(x-2)(4x+3) =0$ Use Zero-Product Property. $x-2=0 \quad or $\quad 4x+3 =0$ Solve for $x$. $x=2 \quad $ or $\quadx =-\frac{3}{4}$ Hence, the solution set of the given equation is $\{-\frac{3}{4},2\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.