Precalculus (10th Edition)

Published by Pearson
ISBN 10: 0-32197-907-9
ISBN 13: 978-0-32197-907-0

Appendix A - Review - A.6 Solving Equations - A.6 Assess Your Understanding - Page A51: 66

Answer

$\{-4,-3,0,1\}$

Work Step by Step

Recall that $|a|=b \implies a=b$ or $a=-b$. Thus, using the rule above yields: $x^2+3x-2=2\quad $ or $\quad x^2+3x-2=-2$ Solve each equation. Solve $x^2+3x-2=2$: Subtract $2$ from both sides. $x^2+3x-2-2=2-2$ Simplify. $x^2+3x-4=0$ Rewrite $3x$ as $4x-x$. $x^2+4x-x-4=0$ Group the terms. $(x^2+4x)+(-x-4)=0$ Factor each group. $x(x+4)-1(x+4)=0$ Factor out $(x+4)$. $(x+4)(x-1)=0$ Use Zero-Product Property. $x+4=0\quad$ or $\quad x-1=0$ Solve for $x$. $x=-4\quad $ or $\quad x=1$ Solve $x^2+3x-2=-2$: Add $2$ to both sides. $x^2+3x-2+2=-2+2$ Simplify. $x^2+3x=0$ Factor out $x$. $x(x+3)=0$ Use Zero-Product Property. $x=0$ or $x+3=0$ Solve for $x$. $x=0$ or $x=-3$ Hence, the solution set of the given equation is $\{-4,-3,0,1\}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.