Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.2 Relative Extrema - 5.2 Exercises - Page 272: 32

Answer

$$ f(x) =\frac{x^{2}}{\ln x} $$ A relative minimum occurs at $x=1.648,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(1.648) &=\frac{(1.648)^{2}}{\ln (1.648)}\\ &=5.436 \\ \end{aligned} $$

Work Step by Step

$$ f(x) =\frac{x^{2}}{\ln x} $$ To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} f^{\prime}(x) &=\frac{(\ln x) 2 x-x^{2}\left(\frac{1}{x}\right)}{(\ln x)^{2}} \\ &=\frac{2 x \ln x-x}{(\ln x)^{2}} \\ &=\frac{x(2 \ln x-1)}{(\ln x)^{2}} \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) =\frac{x(2 \ln x-1)}{(\ln x)^{2}} &=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ x(2 \ln x-1)&=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ x=0 & \quad \quad or \quad \quad 2 \ln x-1=0 \\ x=0 & \quad \quad or \quad \quad 2 \ln x=1 \\ x=0 & \quad \quad or \quad \quad \ln x=\frac{1}{2} \\ x=0 & \quad \quad or \quad \quad x= e^{\frac{1}{2} } \approx 1.648\\ \end{aligned} $$ Next, we find any values of $x$ where $f^{\prime}(x) $ fails to exist. This occurs whenever the denominator of $f^{\prime}(x) $ is $0$, here we observe that the denominator $ \ln x$ equal to 0, when $x=1$. But , $f(x) $ is not defined also at $x=1 $, since the domain $f(x)$ is $(0, \infty) .$ So, The only critical number is : $x =e^{\frac{1}{2} } \approx 1.648 $. We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. Now, check the sign of $f^{\prime}(x)$. in the intervals $$ (-\infty, 1.648 ), \quad\quad (1.648 ,\infty ) . $$ (1) Test a number in the interval $(-\infty, 1.648 )$ say $1.5$: $$ \begin{aligned} f^{\prime}(1.5) &=\frac{(1.5)(2 \ln (1.5)-1)}{(\ln (1.5))^{2}}\\ &=-1.725 \\ &\lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-\infty ,1.648 )$. (2) Test a number in the interval $(1.648, \infty )$ say $2$: $$ \begin{aligned} f^{\prime}(2) &=\frac{(2)(2 \ln (2)-1)}{(\ln (2))^{2}}\\ &=1.608 \\ &\gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(1.648, \infty )$. From (1), (2) we find that: (*) The function $f$ is decreasing on interval $ ( -\infty ,1.648) , $ and it is increasing on interval $ (1.648 ,\infty ) . $ So, a relative minimum occurs at $x=1.648,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(1.648) &=\frac{(1.648)^{2}}{\ln (1.648)}\\ &=5.436 \\ \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.