Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.2 Relative Extrema - 5.2 Exercises - Page 272: 28

Answer

$$ f(x) =\frac{x^{2}-6 x+9}{x+2} $$ (*) A relative maximum occurs at $x=-7,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(-7) &=\frac{(-7)^{2}-6 (-7)+9}{(-7)+2} \\ &=-20. \\ \end{aligned} $$ (**) A relative minimum occurs at $x=3,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(3) &=\frac{(3)^{2}-6 (3)+9}{(3)+2} \\ &=0. \\ \end{aligned} $$

Work Step by Step

$$ f(x) =\frac{x^{2}-6 x+9}{x+2} $$ To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} f^{\prime}(x) &=\frac{(2 x-6)(x+2)-(1)\left(x^{2}-6 x+9\right)}{(x+2)^{2}} \\ &=\frac{x^{2}+4 x-21}{(x+2)^{2}} \\ &=\frac{(x+7)(x-3)}{(x+2)^{2}} \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) =\frac{(x+7)(x-3)}{(x+2)^{2}}&=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ (x+7)(x-3) &=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ (x+7)=0 & \quad \quad or \quad \quad (x-3)=0 \\ x=-7 & \quad \quad or \quad \quad x=3 \\ \end{aligned} $$ Next, we find any values of $x$ where $f^{\prime}(x) $ fails to exist. This occurs whenever the denominator of $f^{\prime}(x) $ is $0$, here we observe that the denominator $(x+2)^{2}$ equal to 0, when $x=-2$. But , $f(x) $ is not defined also at $x=-2 $.So, The only critical numbers are: $x =-7 $ and $x=3$ . We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. Now, check the sign of $f^{\prime}(x)$. in the intervals $$ (-\infty, -7 ), \quad (-7 ,3 ) , \quad \text {and} \quad (3, \infty). $$ (1) Test a number in the interval $(-\infty, -7 )$ say $-8 $: $$ \begin{aligned} f^{\prime}(-8) &=\frac{((-8)+7)((-8)-3)}{((-8)+2)^{2}}\\ &=\frac{11}{36} \\ &\approx 0.305 \\ &\gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(-\infty, -7 )$. (2) Test a number in the interval $ (-7 ,3) $ say $ 0$: $$ \begin{aligned} f^{\prime}(0) &=\frac{((0)+7)((0)-3)}{((0)+2)^{2}}\\ &=-\frac{21}{4} \\ &\approx -5.25 \\ &\lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-7 ,3 )$. (3) Test a number in the interval $(3, \infty )$ say $4 $: $$ \begin{aligned} f^{\prime}(4) &=\frac{((4)+7)((4)-3)}{((4)+2)^{2}}\\ &=\frac{11}{36}\\ &\approx 0.305 \\ &\gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(3, \infty )$. From (1), (2) and (3) we find that: (*) The function $f$ is increasing on interval $ ( -\infty , -7) , $ and it is decreasing on interval $ (-7 ,3 ) . $ So, a relative maximum occurs at $x=-7,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(-7) &=\frac{(-7)^{2}-6 (-7)+9}{(-7)+2} \\ &=-20. \\ \end{aligned} $$ (**) The function $f$ is decreasing on interval $ (-7 ,3 ), $ and is increasing on interval $ ( 3 , \infty). $ So, a relative minimum occurs at $x=3,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(3) &=\frac{(3)^{2}-6 (3)+9}{(3)+2} \\ &=0. \\ \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.