Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.2 Relative Extrema - 5.2 Exercises - Page 272: 29

Answer

$$ f(x) =x^{2} e^{x}-3 $$ (*) A relative maximum occurs at $x=-2,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(-2) &=(-2)^{2} e^{-2}-3 \\ &=\frac{4}{e^2}-3. \\ & \approx -2.4587 \end{aligned} $$ (**) A relative minimum occurs at $x=0,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(0) &=(0)^{2} e^{0}-3 \\ &=-3. \\ \end{aligned} $$

Work Step by Step

$$ f(x) =x^{2} e^{x}-3 $$ To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} f^{\prime}(x) &=x^{2} e^{x}+2 x e^{x} \\ &=x e^{x}(x+2) \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) =x e^{x}(x+2)&=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ x (x+2) &=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ (x+2)=0 & \quad \quad or \quad \quad x=0 \\ x=-2 & \quad \quad or \quad \quad x=0 \\ \end{aligned} $$ The only critical numbers are: $x =-2 $ and $x=0$ . We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. Now, check the sign of $f^{\prime}(x)$. in the intervals $$ (-\infty, -2 ), \quad (-2 ,0 ) , \quad \text {and} \quad (0, \infty). $$ (1) Test a number in the interval $(-\infty, -2 )$ say $-3$: $$ \begin{aligned} f^{\prime}(-3) &=(-3) e^{-3}((-3)+2)\\ &=\frac{3}{e^3} \\ &\approx 0.14936 \\ &\gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(-\infty, -2 )$. (2) Test a number in the interval $ (-2 ,0) $ say $ -1$: $$ \begin{aligned} f^{\prime}(-1) &=(-1) e^{-1}((-1)+2)\\ &=-\frac{1}{e}\\ &\approx -0.36787 \\ &\lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $(-2 ,0 )$. (3) Test a number in the interval $(0, \infty )$ say $1 $: $$ \begin{aligned} f^{\prime}(1) &=(1) e^{1}((1)+2)\\ &=3e\\ &\approx 8.1548 \\ &\gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(0, \infty )$. From (1), (2) and (3) we find that: (*) The function $f$ is increasing on interval $ ( -\infty , -2) , $ and it is decreasing on interval $ (-2 ,0 ) . $ So, a relative maximum occurs at $x=-2,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(-2) &=(-2)^{2} e^{-2}-3 \\ &=\frac{4}{e^2}-3. \\ & \approx -2.4587 \end{aligned} $$ (**) The function $f$ is decreasing on interval $ (-2 ,0 ), $ and it is increasing on interval $ ( 0 , \infty). $ So, a relative minimum occurs at $x=0,$ and the value of the function $f$ at this value is given by: $$ \begin{aligned} f(0) &=(0)^{2} e^{0}-3 \\ &=-3. \\ \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.